
1MOBILE APPLICATION SECURITY SERVICES DATASHEET

Shift-Left Testing
Methodologies for
Microservices

Author: Rajan Vishwa Ranjan

Challenges and Solutions

Agenda
INTRODUCTION 3

PRIMARY CHALLENGES IN THE TESTING OF MICROSERVICES. 4
1. NAVIGATING THE RAPID CURRENTS OF QA AND DEVELOPMENT IN AGILE 4
2. DELAYED FEEDBACK IN THE DEVELOPMENT CYCLE 4

SOLUTION 5

EVOLVING FROM PYRAMID TO DIAMOND STRATEGY 5

SHIFT LEFT TESTING STRATEGY 7

CONTRACT TESTING 7

CHOOSING THE RIGHT CONTRACT TESTING TOOL 7

IMPLEMENTING PACT 8

PACT FLOW INTEGRATION WITH JENKINS 10

SERVICE VIRTUALIZATION 12

IMPLEMENTING SERVICE VIRTUALIZATION 12

CONCLUSION 16

Introduction
This white paper explores the enhancement of microservices quality through the integration of
Shift-Left testing with Contract Testing and Service Virtualization. It highlights the importance of early
and regular testing within the microservices architecture to address its inherent complexity and
dynamic nature effectively.

The paper aims to provide in-depth insights into Shift-Left testing strategies and offer practical
guidance for their implementation. The goal is to boost the development of resilient, high-quality
microservices, promoting enhanced software reliability and quicker time-to-market.

By embracing these methodologies, organizations can substantially enhance their software quality
assurance practices, resulting in improved business outcomes within a competitive digital landscape.

Shift-Left Testing Methodologies for Microservices 3

Agile methodologies and online software
distribution have made automation and QA
essential, diminishing the relevance of waterfall
models.

Testing now occurs alongside development,
covering everything from unit to end-to-end tests
for instant feedback. However, development of
microservices brings in a challenge as due to
their interdependence and the complexity of
testing across services and APIs which undergo
constant upgrade in development phase.

Issues often emerge late in the process, forcing
a return to earlier development stages or
revealing problems during final integration tests.

This results in delayed feedback and a drift back
towards waterfall practices in agile testing
environments.

Replicating a full cluster for testing can result in delays, with tests taking minutes to hours for
feedback, deterring frequent testing by developers. Developers often skip integration tests, where
services interact with the cluster, delaying these tests to later deployment stages.

This delay leads to bugs being discovered late, reminiscent of waterfall methodologies, where bugs
found by engineers from other teams cause inefficiencies in diagnosis, documentation, and resolution.

Consequently, the cost of fixing bugs increases significantly, illustrating a procedural challenge that
impacts the efficiency and cost-effectiveness of the development process.

Primary Challenges in the testing of Microservices
Navigating the rapid currents of QA and Development in Agile

Delayed feedback in the development cycle

4

Conception

Delayed FeedBack

Initiation

Requirement analysis

System design

Implementation

Testing

Maintenance

Shift-Left Testing Methodologies for Microservices

Let's delve into addressing the above
challenges, which will serve as the central
focus of this white paper.

Shift-left testing underscores the
importance of integrating testing early in
the development lifecycle, empowering
developers to detect and rectify bugs
when they are less costly to resolve. The
diamond testing strategy integrates
shift-left with later stages (shift-right
testing), guaranteeing bug detection
through continuous testing at every
lifecycle stage, thereby minimizing errors
and enhancing quality.

Furthermore, as we proceed, we will
explore how contract testing and service
virtualization contribute to testing
microservices earlier in the development
cycle.

Transitioning from the traditional test pyramid to a Diamond strategy for microservices testing
signifies a shift in testing approach, recognizing the distributed nature of microservices architectures.
This evolution introduces a more extensive integration testing layer, capturing the complex
interactions between independently deployable services.

Consider an online retail platform consisting of multiple microservices: a Product Catalog Service, an
Order Management Service, a Payment Processing Service, and a User Account Service. Each service
is developed, deployed, and scaled independently, interacting through well-defined APIs.

In the traditional Pyramid approach, the focus of individual unit tests for services like the Product
Service or Order Management Service often led to intricate mocks and test doubles. However, the
return on investment (ROI) in terms of test confidence was relatively low due to several factors:

Isolated Testing:

Unit tests failed to capture issues arising from service interactions, resulting in
integration bugs.

Solution

Evolving from Pyramid to Diamond Strategy

Limited End-to-End Coverage:

Comprehensive UI testing was challenging amidst rapid development cycles,
overlooking certain user flow issues.

Service Dependencies:

Integration tests frequently encountered failures due to unavailable dependent
services, thereby slowing down the development cycle.

5Shift-Left Testing Methodologies for Microservices

To overcome these challenges, teams can adopt a Diamond strategy, specifically tailored for
microservices, which emphasizes integration testing. This approach focuses on examining how the
Payment Processing Service interacts with the Order Management and User Account Services,
employing real API calls on the wire. This shift yields numerous benefits, including:

Faster Issue
Identification

Increased Deployment
Confidence

Expanded integration and
contract testing swiftly
pinpoint discrepancies in API
contracts and data handling
between services, thereby
reducing debugging time.

With comprehensive testing
spanning units, integrations,
and contracts, the team can
deploy updates more swiftly,
knowing that critical
workflows are thoroughly
verified.

6Shift-Left Testing Methodologies for Microservices

This white paper focuses on two most important strategies that encompasses shift left testing and
early bug detection.

 1. Contract Testing
 2. Service Virtualization

Let zoom in into both strategies.

Contract testing is integral to left shift testing in microservices, facilitating early detection of
integration issues. By validating service interactions against predefined contracts, it ensures
compatibility and reliability across independently developed services. This proactive approach
enables teams to identify and address potential problems at the development stage, reducing the
likelihood of deployment failures.

As in the image below, API contracts such as schema, versioning, third party integration and backward
compatibility testing are possible use cases, how contract driven testing helps to catch the bug early
in the development cycle.

Shift Left Testing Strategy

Contract Testing

Contract Testing Use Cases

There are several tools to choose from the market for contract testing. Based on the use cases and
the testing requirement, the right tool should be chosen.

Here are some of the tools and its key features:

Choosing the Right Contract Testing Tool

Overview: Pact is a prominent tool for consumer-driven contract testing, focusing on capturing the
interactions between service consumers and providers in a contract file. This approach ensures that
both sides understand and agree on how the APIs are used and respond.

PACT

• Consumer-Driven: Enables consumer services to define their expectations in a Pact file,
which acts as the contract.

• Mock Services: Pact mocks the provider services during testing, allowing consumers to
test their interactions independently.

Additional Details:

7

API Contracts Versioning Third Party Integration Backward Compatibility

Shift-Left Testing Methodologies for Microservices

Overview: Spring Cloud Contract is designed for developers working within the Spring ecosystem,
providing tools to produce and consume contracts that verify REST and messaging interactions. It
enables developers to work against service contracts, ensuring applications will work together without
directly accessing each other's codebases.

Additional Details:

• Contract Repository: Contracts are stored in a central repository, making it easy for both
providers and consumers to access and validate against them.

• Automated Stub Generation: Automatically generates stubs from the contracts,
facilitating provider-independent testing for consumers.

Spring Cloud Contract

Overview: WireMock is an advanced tool for simulating HTTP-based APIs, allowing developers to
mock web services in a flexible and realistic manner. It is not limited to contract testing but is widely
used for this purpose due to its ability to accurately simulate the behaviour of external services.

Additional Details:

• Simulation of HTTP Services: WireMock can simulate any HTTP service, including REST
and SOAP APIs, by mocking responses to requests.

• Dynamic Response Creation: Allows for dynamic creation of responses based on request
parameters, enabling more realistic testing scenarios.

WireMock

Example Scenario

Consider a microservices architecture, the Order Service and Payment Service often interact with
several other services to fulfil their functionalities. For instance, alongside Order Service and Payment
Service, there might be any number of microservices interacting with each other. Let's consider
Inventory Service responsible for managing product availability, Customer Service handling user
accounts and profiles, and Notification Service to notify users about order status.

The Order Service interacts with the Inventory Service to check product availability before placing an
order. Once an order is placed, it communicates with the Payment Service to process the payment
transaction. Additionally, the Order Service might notify the Customer Service to update user
information or the Notification Service to inform users about the order status.

Implementing PACT

8Shift-Left Testing Methodologies for Microservices

The diagram illustrates a network of microservices with
five distinct services interacting with one another.

Each service has potential communication paths to the
others. The number of potential communication paths in
a network where each service can communicate with
every other is not simply 5 multiplied by 5, which would
suggest 25, but rather a more complex interconnection
is at play.

If we generalize this, for n services where every service
could potentially communicate with every other service,
the number of possible communication channels could
indeed become very large, specifically n×(n−1).

This is loosely referred to as dependency hell. (Ref: MicroServices Martin Fowler, Netflix,
Componentized Composable SOA

9Shift-Left Testing Methodologies for Microservices

PACT Flow Integration with Jenkins

Integrating PACT within the Jenkins CI/CD pipeline facilitates consistent and automated contract testing.
It triggers a sequence of events, ensuring that services adhere to their defined contracts and interaction
patterns.

Step by Step PACT flow

Perquisite: A PACT broker facilitates the exchange of contracts between consumers and providers. It can
be deployed as a Docker container with the following setup:.

A Jenkins job is created to generate the
contract file: This job is triggered when the
code is merged in the remote repository. This
pipeline is configured to trigger on a push
event (git push could be replaced with a
similar trigger for other SCM tools),
executing a Maven command that runs the
tests generating PACT contracts and
optionally publishes them if the pactPublish
property is set.

Interaction and Contract Generation by Order
Service: The Order Service, acting as a consumer,
interacts with a mocked version of the Payment
Service to generate the contract. This process
ensures that the consumer's expectations are
clearly defined and documented. This code defines
the expectations of the Order Service for a
payment processing request, including the
expected request path, method, body, and
response.

10Shift-Left Testing Methodologies for Microservices

Publishing the Contract to the PACT Broker: Once the contract is generated, it is published to the
PACT Broker, a central repository where contracts are stored and shared between the consumer and
provider services.

Triggering Provider Unit Tests with a Jenkins Job: A separate Jenkins job is set up to trigger the
Payment Service's provider unit tests. These tests interact with the mocked provider to verify that the
service can fulfil the contract.

Receiving the Contract from the PACT Broker: The Payment Service, as the provider, retrieves the
contract file from the PACT Broker. This is typically handled automatically by the PACT library when the
provider tests are run.

Verifying the Contract by the Payment Service: This code configures the Payment Service to verify
interactions defined in the PACT file retrieved from the specified PACT Broker URL, ensuring that the
service can handle requests as expected by the Order Service

11Shift-Left Testing Methodologies for Microservices

Service Virtualization
Service virtualization involves creating lightweight, scalable, and deployable simulations of services.
These virtual services mimic the real services' APIs and responses, enabling teams to test the
interactions between microservices without the need for all services to be fully implemented or
available.

Benefits of Service Virtualization

• Reduced Testing Time and Costs: By removing dependencies on real service
implementations, testing can proceed in parallel with development.

• Increased Test Coverage and Quality: Enables testing of edge cases and failure modes
that are difficult to replicate with real services.

• Enhanced Agility: Supports a shift-left approach, allowing testing to occur earlier in the
development cycle.

Implementing Service Virtualization
Strategy and Planning

• Identify Dependent Services: Map out the microservices architecture to identify which
services depend on others.

• Determine Virtualization Needs: Assess which services would benefit most from
virtualization based on development timelines and testing requirements.

12Shift-Left Testing Methodologies for Microservices

Step-by-Step Implementation

Virtualizing the Payment Service: First, create a virtual Payment Service file that approves payment
requests. Define the below Json mapping that listens for POST requests to /api/payments and
responds with a JSON payload indicating success.

Virtualizing the Inventory Service: Next, virtualize the Inventory Service to confirm item availability.
The below Json mapping listens for Get /api/inventory/check and responds with a Json Payload
indicating success.

Tools and Setup: Use WireMock, a �exible library for stubbing and mocking web services. It allows simulation
of responses of the Payment Service and Inventory Service.

13Shift-Left Testing Methodologies for Microservices

Create the setup in the test file that starts the wiremock server for Payments and Inventory services.

This test validates that the OrderService can successfully process an order when the inventory is
available, and the payment is processed successfully.

Lastly, create the Integration test that validates that the OrderService can successfully process an
order when the inventory is available. Post this, the payment is processed successfully.

14Shift-Left Testing Methodologies for Microservices

Also, make sure to check the Order Service's ability to handle scenarios where an order cannot be
processed because the requested items are not available in inventory.

Adjust the Inventory Service's WireMock stub.

15Shift-Left Testing Methodologies for Microservices

Embracing shift-left testing methodologies, particularly through the strategic integration of service
virtualization and contract testing, marks a pivotal advancement in ensuring the quality and reliability
of microservices architecture.

By addressing the inherent challenges head-on, organizations can significantly enhance their testing
efficiency, accelerate time-to-market, and ultimately deliver superior user experiences. This holistic
approach not only mitigates risks associated with microservices but also fosters a culture of
continuous improvement and innovation in software development practices.

References

Waterfall model in the nutshell, FourWeekMBA
John Mathon (2015, May 28) MicroServices Martin Fowler, Netflix, Componentized Composable SOA

Conclusion

16Shift-Left Testing Methodologies for Microservices

